Manual for Screwjack Solution

Firstly it should be noted that screwjacks use a pulsing system to keep track. They are not absolute systems (generally). Whenever the power is lost from the AZ/EL unit the direction will be lost. When this happens, the antenna will have to be taken back to 0 heading and the re-calibrate switch triggered.

Screwjacks are a method of moving a small dish. They often contain microswitches or magnetic reed switches that operate when the dish moves. It is also necessary to provide information about the direction of travel. So in essence there are three switches.

- 1. Pulse count of movement
- 2. Up switch
- 3. Down switch

My solution makes use of the AZ/EL board, part of the set of 5 boards provided for my beam indicator project. Essentially, the following connections are made on the encoder board connector on the AZ/EL unit – J1

- 1. "Count in" connects to pin 7 of the connector
- 2. Direction switch "Up" connects to pin 5
- 3. Direction switch "Down" connects to pin 6

Either the old or new AZ/EL boards can be used for this purpose. The circuit of the AZ/EL board remains substantially the same except for the interconnections described in this document. The correct software must be loaded. This is called Screw.hex

The 16F628 (or A) is again used, although a 16F648A would also be suitable.

The program adjusts to the range of the screwjack but in order for this to happen some values must be placed in eedata of the PIC.

Because each screwjack arrangement is different the user will have to develop their own corrections table as described here, so programming facilities will be required.

When Screw.hex is loaded into a programmer you should be able to 'see' and also 'edit' the edata. The last 4 bytes of eedata memory of the PIC are the storage locations for the two important numbers that change with each screwjack and its mechanical arrangement.

The Screw.hex file was developed for a screwjack that has 1628 counts from 0 to 100 degrees. So why do the numbers not align with the numbers in the eedata table? The numbers in the eedata when converted to decimal are 1680counts and 103 degrees.

CountInMaxDta (1680 in the sample file)

In the distributed file, CountInMaxDta occupies the last two bytes of eedata. Inspection of the distributed file once loaded into your programmer will show this to be stored as \$9006. In most hex systems the low byte is stored first, so you have to swap these to get the way we are used to reading numbers \$0690. Note \$ sign indicates a HEX number.

To convert \$0690 to decimal: 6*256=1536 9*16=144 So 0690 =1536+144=1680

DegSpreadDTA (103 in the distributed file)

In the distributed file the 3^{rd} and 4^{th} to last entries in the eedata are 103 stored as \$6700. Again swapping the position, we get \$0067. To convert \$0067 to decimal: 6*16 = 967*1=7So \$0067=103 decimal.

So why 1680 and 103? These two numbers are used by the PIC16F628 to calculate how many counts in a degree and to work out any corrections needed for the count.

This part of the process is a bit tricky, so pay attention.

In the above example the actual max count was actually 1628 for a 100 degree movement. Now to adjust for ongoing errors due to the nonlinearity of screwjacks moving dishes, and to allow for the use of integer arithmetic in this portion of the PIC, an adjustment has been made to "maxcount" and "degrees covered" numbers.

If real numbers (those with a decimal point) had been used for this part of the calculation there is a small change the wrong part of the error correction table may be hit.

There are 120 error correction locations available in the PIC (actually 124 but 120 works better and leaves some space for other items). Dividing the maximum count by 120 gives a non integer result (13.56666). This makes table hopping awkward.

Where is the smallest multiple of 120 above 1628? Answer 1680. This results in a multiplier of 14 (14*120=1680). Consequently we can fit the range from 0 to 1628 counting steps comfortably in 14 equal increments in 120 bytes of memory with a bit left over.

Now convert the new maximum count to HEX (use the calculator in Windows with Scientific ticked), reverse the bytes and enter them into the eedata in your programmer.

Because the count interval has been altered we also have to adjust the degree spread. Use this formula substituting your numbers for 1680 and 1628: New count (1680) * Old degree spread (100) / Old max count (1628) 1680 * 100 / 1628 = 103This is your new maxdegree spread. So convert to hex, reverse the bytes and enter into your eedata.

That's the hard part done.

Now for the error correction table:

The AZ/EL unit outputs a number from 0-4096 equating with a movement from 0-360 degrees. For EME work, users will not need 360 degrees of azimuth or elevation.

In this system all data is converted to a 12 bit 0-4096 range over a range of 360 degrees. This enables the shack unit to convert the input to degrees irrespective of what input device is being used viz AS5045, pot or screwjack. The 10 bit AS5040 system is not used in screwjack applications.

Example:

```
If we have a count of 45 in a system where there is a maximum count of 1000 over 100 deg
(corresponds to 10 counts per degree), the AZ/EL unit converts to a reading of :
X= ((Totalcount * 4096 * DegSpread) / 360) / CountInMaxDta
```

In the above example we calculate the output number like this:

 $\begin{array}{l} X = \ 45 * 4096 * 100 \ / \ 360 \ / 1000 \\ X = 51 \end{array}$

The value of X is sent to the shack unit where it converts 51 to 4.5 degrees for display and calculation.

The table in the AZ/EL unit corrects for errors, it does not provide a read out in degrees, this latter conversion is handled in the shack software as described above.

If your screwjack and its mounting provides a linear count you do not need any data in the eedata error table from address 0 to 121. Just make them all 0s. Don't forget to set CountInMaxDta and DegSpreadDTA as described above.

If your mechanical arrangements are not linear then you will need to adjust the error table. The error to be added to the count is derived by breaking the counts up evenly through the error table, and where necessary, extrapolating between readings to obtain more accurate adjustments. The table assumes that 0 degrees has its error at address 0 and as the count progresses higher so does the table address.

The table has 120 positions to store corrections for your real count. In the example provided each location has a range of 14 counts. Table position 0 coincides with the first setting of your counter so will usually have a 0 error correction. The next position (1) coincides in the above example with 14 counts. You will need to develop a set of corrections based on what is being read by the shack unit and what it should be. These can then be hand entered into the eedata table when the PIC is to be programmed. The errors will be cumulative.

Have a look at the example provided below.

Example: Max count of 1680; spread of 103 degrees and therefore 16.3 counts per degree. By experiment it is found that every 21 counts it is necessary to add 1 to the count In this example the step in the table is 14 counts (see P2):

Count	Degrees	Address	Error val in	
	C .	of table	table	
0	0	0	0	
14	0	1	0	
28	1	2	1	
42	2	3	2	
56	3	4	2	
70	4	5	3	
84	5	6	4	
98	6	7	4	
112	6	8	5	
126	7	9	6	
140	8	10	6	
154	9	11	7	
168	10	12	8	
182	11	13	8	
196	12	14	9	
210	12	15	10	
224	13	16	10	
238	14	17	11	
		etc		

This is going to take time but just think how worthwhile it will be when it is working.

Note that because errors may be negative the PIC program recognizes that numbers from 0-127 (0-7F hex) are positive corrections while numbers from 128-255 (80-FF) are negative corrections. For example 129 equates to -1, while 135 equates to -7 (just take 128 from the number to find its negative quantity).

This could be a long process and may require some retakes, you only have to do it once unless you change the mechanical arrangements of the screwjack.

I suggest you peak the antenna on noise from the sun using the shack unit to determine the sun's position. This is a quite an accurate calculation, better than 0.1 degrees.

Offset

By placing SW2 in the ON position an offset may be added to the readings. This will be useful where the unit is rotated a certain amount to cover a different part of the sky. In this case put the value of the offset required in memory location 123 (hex 7B) in hex. Eg \$5A = 90 degrees, \$4B = 75 degrees, \$51 = 81 degrees and operate the switch SW2.

Location 123 is the 5th to last eedata location. The default is \$5A or 90 decimal. This can be any value you need, although normally in the range 0-180. Only whole degree offsets are possible. The arithmetic involved in the conversion is integer arithmetic so there is a small possibility that the offset may be a degree out.

As offset may only be positive SW2 should be ON for the higher of the two uses. Calibration should be conducted in the position where SW2 is off.

Switch functions

SW1 when low resets count (low = on for all switches). Only momentary action required SW2 when low adds an offset set in eedata at location 123 decimal (\$7B) SW3 when low reverses the count when your screwjack works the reverse way. The internal workings of the error table still operate on an increasing number from 0 to MaxCount, irrespective of the position of this switch, so all error calculations should just consider *counts* not degrees. Also remember to swap your down and up (or left and right) inputs if this switch is used.

Suggestions

Extend the active end of SW1 to the serial port DB9 socket pin 2 (this is currently unused). Take a wire to the shack unit and then connect the calibrate switch to pin 2 of the corresponding DB9 connector. If you are using 2 AZ/EL units the wires could be connected together and this would result in a simultaneous reset of the counters to zero. In fact one advantage of using a screwjack is that the AZ/EL units can be located in the shack with only the "Count in" pulses coming front the antenna, the rest being available in the shack.

SW2 and SW3 could have external switches mounted on the box containing the AZ/EL units to make their functions locally available during alterations to setups.

When using reverse count with SW3 ON you will have to reverse the connections of the Up and Down switches to the board.

As an important postscript. Make sure that the CountIn from the screwjack and the Up/Down/Left/Right pulses are bounce free or you might get some funny results.

I recommend that when calibrating you should use the best program (or internet site) you can find for calculating the position of the moon.

http://www.moshier.net/aadoc.html provides AA.zip (a dos moon position calculator that seems to provide the best answers I could find). Next I would use Doug VK3UM's EME2006 from http://www.sm2cew.com/download.htm or here's one from the US Navy http://aa.usno.navy.mil/data/docs/AltAz.html judging from its name may be AA in action. The shack unit is usually within 0.1 degree but may have errors up to 0.2 degree.

John Drew VK5DJ 27 December 2006

On the next three pages is information that will help you generate the error table

Use the formula: Count = degrees *4096 / 360 or Degrees = Count *360 / 4096This table shows the relationship between degrees (360) and count (4096). This was calculated with count rounded to the nearest whole number.

Deg	Count	Deg	Count	Deg	Count	Deg	Count
1	11	91	1035	181	2059	271	3083
2	22	92	1046	182	2070	272	3094
3	34	93	1058	183	2082	273	3106
4	45	94	1069	184	2093	274	3117
5	56	95	1080	185	2104	275	3128
6	68	96	1092	186	2116	276	3140
7	79	97	1103	187	2127	277	3151
8	91	98	1115	188	2139	278	3163
9	102	99	1126	189	2150	279	3174
10	113	100	1137	190	2161	280	3185
11	125	101	1149	191	2173	281	3197
12	136	102	1160	192	2184	282	3208
13	147	103	1171	193	2195	283	3219
14	159	104	1183	194	2207	284	3231
15	170	105	1194	195	2218	285	3242
16	182	106	1206	196	2230	286	3254
17	193	107	1217	197	2241	287	3265
18	204	108	1228	198	2252	288	3276
19	216	109	1240	199	2264	289	3288
20	227	110	1251	200	2275	290	3299
21	238	111	1262	201	2286	291	3310
22	250	112	1274	202	2298	292	3322
23	261	113	1285	203	2309	293	3333
24	273	114	1297	204	2321	294	3345
25	284	115	1308	205	2332	295	3356
26	295	116	1319	206	2343	296	3367
27	307	117	1331	207	2355	297	3379
28	318	118	1342	208	2366	298	3390
29	329	119	1353	209	2377	299	3401
30	341	120	1365	210	2389	300	3413
31	352	121	1376	211	2400	301	3424
32	364	122	1388	212	2412	302	3436
33	375	123	1399	213	2423	303	3447
34 25	386	124	1410	214	2434	304	3458
35	398	125	1422	215	2446	305	3470
36 27	409	126	1433 1444	216	2457	306 207	3481
37 38	420	127 128		217	2468 2480	307	3492 3504
	432		1456	218 210		308	
39 40	443 455	129 130	1467 1479	219 220	2491 2503	309 310	3515 3527
40 41	455 466	130	1479	220 221	2503 2514	310	3527 3538
41 42	400 477	131	1490 1501	221			3538 3549
					2525	312	
43	489	133	1513	223	2537	313	3561

44	500	134	1524	224	2548	314	3572
45	512	135	1536	225	2560	315	3584
46	523	135	1536	226	2571	316	3595
47	534	137	1558	227	2582	317	3606
48	546	138	1570	228	2594	318	3618
49	557	139	1581	229	2605	319	3629
50	568	140	1592	230	2616	320	3640
51	580	141	1604	231	2628	321	3652
52	591	142	1615	232	2639	322	3663
53	603	143	1627	233	2651	323	3675
54	614	144	1638	234	2662	324	3686
55	625	145	1649	235	2673	325	3697
56	637	146	1661	236	2685	326	3709
57	648	147	1672	237	2696	327	3720
58	659	148	1683	238	2707	328	3731
59	671	149	1695	239	2719	329	3743
60	682	150	1706	240	2730	330	3754
61	694	151	1718	241	2742	331	3766
62	705	152	1729	242	2753	332	3777
63	716	153	1740	243	2764	333	3788
64	728	154	1752	244	2776	334	3800
65	739	155	1763	245	2787	335	3811
66	750	156	1774	246	2798	336	3822
67	762	157	1786	247	2810	337	3834
68	773	158	1797	248	2821	338	3845
69	785	159	1809	249	2833	339	3857
70	796	160	1820	250	2844	340	3868
71	807	161	1831	251	2855	341	3879
72	819	162	1843	252	2867	342	3891
73	830	163	1854	253	2878	343	3902
74	841	164	1865	254	2889	344	3913
75	853	165	1877	255	2901	345	3925
76	864	166	1888	256	2912	346	3936
77	876	167	1900	257	2924	347	3948
78	887	168	1911	258	2935	348	3959
79	898	169	1922	259	2946	349	3970
80	910	170	1934	260	2958	350	3982
81	921	171	1945	261	2969	351	3993
82	932	172	1956	262	2980	352	4004
83	944	173	1968	263	2992	353	4016
84	955	174	1979	264	3003	354	4027
85	967	175	1991	265	3015	355	4039
86	978	176	2002	266	3026	356	4050
87	989	177	2013	267	3037	357	4061
88	1001	178	2025	268	3049	358	4073
89	1012	179	2036	269	3060	359	4084
90	1024	180	2048	270	3072	360	4096

The count above is that which is put out by the AZ/EL unit after conversion to the 4096 standard.

To identify what is coming out of the count routines before 4096 conversion take the count above and plug into the formula:

Observation

CountBeforeConversion =((CountFromTable * CountinMax * 360) /4096)/DegSpread Using our example above: Deg on shack unit = 8 4096 count from table = 91 CountinMax = 1680 DegSpread = 103 CountBeforeConversion = 91 * 1680 * 360 / 4096 / 103 = 130

If your calculator overflows doing this calculation change the order to: 91 * 1680 / 103 * 360 / 4096 = 130

What is wanted

Deg on shack unit = 9.6 4096 count from table = 108 (by extrapolation from table) CountinMax = 1680 DegSpread = 103 CountBeforeConversion = 108 * 1680 * 360 /4096/103 = 155 (to nearest integer)

The difference between the wanted and the observed is 25 counts added.

Now the table is divided into blocks of 14 counts so working from the OBSERVED 130 counts 130/14 = 9.28So in the 9th block an error correction of 25 decimal or \$19 in hex is required.

The above approach is near enough to get you in the ballpark. Finer tuning may be necessary. If you use the reverse switch on the AZ/EL unit I refer you to Charlie VK3NX's description below.

It's over to you now, my brain is tired!

Charlie, VK3NX, describes below how he calibrates the error table

"I found the following procedure to be the best for me in calibrating:

First establish degree spread and count of set up then, referring to the above instructions, I work out the Max degree spread and Max count to plug into the EEDATA....these numbers are also utilised for the correction table. It is very important to take note of how many counts are associated with every error correction entry.

eg 1680 counts means every 14 counts there is an entry in error correction (1680 / 120), and if Max spread is 100 degrees then that equates to every 100/120 = 0.83333 degrees

First I place 00 in all 120 entries in EEDATA. ie. no correction. Then I use sun / moon noise to build data up "Indicated vs Actual" at least 1 reading every 1 degree or so of sun / moon travel.

A more sophisticated approach is to use 0.83333 degree from the above formula (so the averaging is more consistent) eg 0.4 degrees, then 1.2, then 2.0, 2.8, 3.6 etc.

Referring back to John's technique and tables, all the equation conversions simplify as such:

Indicated count: Real count = indicated count * Max count / Max degree spread

eg display says 21 degrees so Real count = $21 \times 1680 / 100 = 352$

Real count wanted, let's say it should be 23 degrees, so real count for 23 degrees should = $23 \times 1680/100 = 386$ (rounded to nearest integer)

Difference = 386-352 = 34.

34 decimal = 22 (hex) so at table entry352 /14 = 25.142....ie 25th entry we enter 22 into the EEDATA table.

What does this mean ? Well when the unit has gone through 352 counts, the code looks at the (352/14) 25th table entry and applies an error correction of +34 to our real count That way our display will read the number we wanted.

NB: Some averaging occurs in the software based on the values above and below our specific location in the error correction table) so a couple of trials are required.

I have found that with one set of calibration figures every 1 degree for my 0-90 degree elevation set up, I was able to have the display reading within 0.2 degrees of the indicated elevation from the internal position locator of the sun/moon. I expect another 1 set of similar calibration points will land me within 0.1 degree.

REMEMBER...once you have applied 1 set of correction points to the table, any subsequent changes must add in the original amount of correction.

IMPORTANT POINTS:

1. Because the mechanical arrangement may potentially be non-linear do the calibration point measurements with the mechanical arrangement finalised.

2. If you plan to count in reverse then set the unit for reverse counting before gathering calibration data.

3. If you plan to use an offset in the "shack unit" then apply that to the shack control unit prior to acquiring your calibration data. Make sure your indicated offset is the TRUE beam/dish heading with your jackscrew at 0 count.

4. If counting in reverse, eg starting at 360 degrees and counting down remember to subtract the indicated count from the starting point to get the true amount of travel.

For example, on "shack unit"Az offset in value is -4 degrees so indicates 356 degrees as initial start. Calibration then says 340 degrees indicated and this equates to 344 true

356-340 = 16 and 356-344 = 12Now we compare 16 and 12 as these figures are the real and wanted amount of travel / count required.

If the above is not done then you will potentially enter data into the wrong locations in the EEdata table."

End of Charlie's description