
VK5DJ_sunmoon.dll - how to use it

The version using extended variables is no longer supported as it was a

problem keeping two versions up to date. To enable access by users of C

compilers I have decided to limit the accuracy to using ‘double’ floats (8

byte). There is no effective difference, the limit to accuracy is the algorithm

rather than the choice of variables. The DLL was compiled in Delphi.

The purpose of the DLL is to provide an easily used platform for the calculation of the position of

the sun or the moon and to provide the associated information often required for amateur radio

operators interested in EME. Due to the use of stdcall the DLL library should work with any of

Windows versions of Delphi, Visual Basic, C and versions of these compilers designed for Linux.

The first and most important procedure is that of DataToDLL. It is this procedure that sends the

required data to the DLL to enable the main calculations to be made. Most of the functions

described below extract result data from the DLL following this call. Some do a separate

calculation such as bearing/distance, GetLocator, GetLatLong.

DataToDLL has 12 parameters. They are in order:

Year,Month,Day,Hour,Minute,Second: two byte word variables

HtASL, Latitude, Longitude: all of which are double real variables RefractSwitch,SunMoonSW:

all of which are Boolean and

Band: which is a double variable).

To send the data to the DLL you load the appropriate variables with the values required and use:

DataToDLL(Year, Month, Day, Hour, Minute, Second, HtASL, Latitude,

Longitude, RefractSwitch,SunMoonSW,Band);

Typical values for the variables might be:

Year: 2008 (note full number required and all date time variables must be in UTC)

Month: 7 (values from 1-12)

Day: 1 (values from 1-31)

Hour: 13 (values from 0-23)

Minute: 10 (values from 0-59)

Second: 30 (values from 0-59

HtASL: 10 (values from 0.0 – whatever your height may be in metres)

Latitude:-37.5833 (your Latitude +ve for northern hemisphere, -ve for southern)

Longitude: 140.3831 (your longitude +ve for East and –ve for West)

RefractSwitch: true (values true or false. True includes optical refraction adjustment)

SunMoon:false (true= sun calculation, false=moon calculation)

Band: 1296.0 (Band in use in MHz used for Doppler calculations

Note that str8 is a type of string with 8 characters. It has been defined like this in GetLocator and

GetRtAscHHMMSS Type Str8 = string[8];

Because the main procedure and its supporting functions are all external and contained in

VK5DJ_sunmoon.dll, you need to tell your compiler and in the case of Delphi this would be in

the declaration part of the interface or implementation section. Note the addition of the word

stdcall and the name of the DLL in quotes. The DLL should be in the same directory as your

main program.

The procedures and functions are first declared in your unit like this:

Procedure DataToDLL(Year,Month,Day,Hour,Minute,Second:word; HtASL, Latitude,

Longitude:double; RefractSwitch,SunMoonSW:boolean;Band:word); StdCall; external

'VK5DJ_sunmoon.dll'

function GetElevation:double; stdcall; external 'VK5DJ_sunmoon.dll'

function GetAzimuth:double; stdcall; external 'VK5DJ_sunmoon.dll'

function GetDoppler:double; stdcall; external 'VK5DJ_sunmoon.dll'

Function GetLibration:double;stdcall;external 'VK5DJ_sunmoon.dll'

function GetDistance:double; stdcall; external 'VK5DJ_sunmoon.dll'

function GetAngularDiam:double; stdcall; external 'VK5DJ_sunmoon.dll'

function GetRightAsc:double; stdcall; external 'VK5DJ_sunmoon.dll'

function GetRtAscHHMMSS:str8; stdcall; external „VK5DJ_sunmoon.dll‟

function GetGHA:double; stdcall; external 'VK5DJ_sunmoon.dll';

function GetLHA:double; stdcall; external 'VK5DJ_sunmoon.dll';

function GetDeclination:double; stdcall; external 'VK5DJ_sunmoon.dll'

function GetDecTopo:double; stdcall; external 'VK5DJ_sunmoon.dll';

function GetDXdistance(Longitude,Latitude,RemoteLong, RemoteLat:double;Dist_B:boolean):

double; stdcall; external 'VK5DJ_sunmoon.dll'

function GetPolarity:double; stdcall; external 'VK5DJ_sunmoon.dll'

function GetDB:double; stdcall; external 'VK5DJ_sunmoon.dll'

function GetLocator(Latitude,Longitude:double):str8; stdcall; external 'VK5DJ_sunmoon.dll'

function GetLatLong(Locator:Str8; LatOrLong:boolean):double; stdcall;

external 'VK5DJ_sunmoon.dll'

function GetVersion:double; stdcall; external 'VK5DJ_sunmoon.dll';

function GetMoonIllum:double; stdcall; external 'VK5DJ_sunmoon.dll';

function GetMoonPhase:double; stdcall; external 'VK5DJ_sunmoon.dll';

function GetQuarter:str8; stdcall; external 'VK5DJ_sunmoon.dll';

function GetPhaseAngle:double; stdcall; external 'VK5DJ_sunmoon.dll';

Notes

In this document I have split the listings of the main procedure DataToDLL, function

GetDXDistance, and GetLatLong across several lines for legibility reasons. Depending on your

compiler this may be allowable or each may need to be placed as one long line. Be careful that

you include the required punctuation.

In GetLocator, GetRtAscHHMMSS and GetQuarter there is a type of “Str8” used. This is typed

as Str8=String[8];

When the main procedure DataToDLL is called the sun or moon calculations are performed and

data is created and stored in the DLL library.

To extract the data you call the appropriate functions:

function GetElevation:double; returns the elevation of the object from your home location in

degrees in a double variable. When printing this to screen you should round it to no better than

the nearest 0.01 degree.

function GetAzimuth:double; returns the azimuth of the object from your home location in

degrees in a double variable. When printing this to screen you should round it to no better than

the nearest 0.01 degree.

function GetDoppler:double; returns the Doppler shift home/home if DataToDLL call was

loaded with home data, and it returns the Doppler shift DX/DX if the DataToDLL call was loaded

with the remote station data. Each shift is doubled from the perspective of the station concerned

as listening to his/her own signal.

To calculate the mutual Doppler shift the single direction shifts are taken into account, added and

averaged. See my sample program TestDLL. Note that to obtain the required data for both the

home station and the DX station the procedure DataToDLL must be called with the appropriate

information before reading back the Doppler shift. Each read provides the doubled Doppler shift

as if the station was hearing its own echoes. The Doppler shift between Home and DX is then

calculated using something like this:

DopplerHome_DX:= DopplerHome/2 +DopplerRemote/2

Internally Doppler uses a time period 1 minute earlier, the current time and the time forward 1

minute to calculate the difference in distance between the moon and the station. This distance

difference is turned into a Doppler shift using the speed of light and the frequency in use.

The GetDoupler:double; returns the value of Doppler into the double variable Doppler.

function GetLibration:double; returns the libration expressed as spread in Hertz of a received

frequency

function GetDistance:double; returns the distance to the sun/moon in kilometres.

function GetAngularDiam:double; returns the angular diameter of the sun/moon in degrees.

function GetRightAsc:double; returns the RightAscension of the sun/moon in decimal hours.

function GetRightAscHHMMSS:Str8; returns the RightAscension of the sun/moon as a short

string of 8 characters i.e. string[8] in the form of HH:MM:SS. Note the type of the function

MUST be a short string of 8 characters. See variable types above.

function GetDeclination:double; returns the geocentric declination of the sun/moon in degrees.

function GetDecTopo:double; returns the topocentric declination of the sun/moon in degrees.

function GetGHA:double; stdcall; returns the Greenwich Hour Angle for the object in degrees.

function GetLHA:double; stdcall; returns the Local Hour Angle in degrees

function GetDXdistance(Longitude,Latitude,RemoteLong,RemoteLat,True): double;

returns the distance of the remote station in kilometres when “True” or its great circle bearing if

“False”. Typical values for the variables might be:

Longitude: 140.8 (dec degrees longitude +ve for East and –ve for West)

Latitude: -37.8 (dec degrees Latitude +ve for Northern hemisphere, -ve for southern)

RemoteLong: -122.00 (DX station longitude +ve for East and –ve for West)

RemoteLatitude: 24.982 (DX station Latitude, +ve for N, -ve for S)

Dist_B: true (true = distance calculation in Km, false= bearing calculated in degrees)

function GetPolarity:double; returns the polarity shift as measured from a moon’s perspective.

See my example as to how to combine the readings from home station and DX station to identify

the possible rotation required between the two antennas (Home and DX). The polarity is most

easily read as a displacement + or – from the DX alignment so I have used an equation to extract

it once each polarity is determined:

PolarityShift:=PolarityHome-PolarityRemote;

If PolarityShift>90 then PolarityShift:=PolarityShift-180;

The resultant is the direction the polarization of the home station must be rotated to match

another station using the same polarization as you. Keep in mind that below 1296 MHz Faraday

rotation can be such as to make this figure meaningless. Treat it as a guide.

function GetDB:double; returns the relative signal strength in dB compared with the mean

position of the moon. The strength will be greater at Perigee and weaker at Apogee. This figure is

an approximate guide as there are many other factors that affect signals. It takes into account the

distance of the moon and the size of the moon.

The next two functions are routines that may prove useful in your program.

function GetLocator(Latitude,Longitude:double):string[8]; returns the Locator for the station

when the latitude and longitude is passed to the function.

function GetLatLong(Locator:Str8; LatOrLong:boolean):double; returns a latitude and longitude

in decimal degrees from a provided locator. The routine is called with the Locator and a Boolean

variable LatOrLong as parameters. Locator has six characters eg QF02ek and the LatOrLong

variable is set true to recover the Latitude and false to recover the Longitude. Because of the

nature of Locators the Lat and Long are approximate but sufficiently accurate for calculations

provided by the DLL.

Example:

Latitude:=GetLatLong(‘QF02ek’, true); sets Latitude to -37.5625 while

Longitude:=GetLatLong(‘QF02ek’,false); sets Longitude to 140.375

function GetVersion:double; returns the version number of the DLL as a double number. A

typical external call might look like this:

label27.Caption:='DLL version '+floattostr(GetVersion);

function GetMoonIllum:double; returns the illumination of the moon in a number from 0-1.

Label29.caption:=’Moon phase ‘+floattostr(GetMoonIllum);

function GetMoonPhase:double; returns the phase of the moon in a number from 0-1.

Label28.caption:=’Moon phase ‘+floattostr(GetMoonPhase);

0 to 0.49 is a waxing moon, 0.5 is full moon while 0.51 to 1.00 is a waning moon

The function takes two seconds to determine if the moon is waxing (growing) or waning

(decreasing) in illumination, consequently the function must be in a time loop. The routine takes

two seconds to settle. Phase and illumination are similar but phase takes into account the waxing

and waning of the moon.

Function GetQuarter: Str8; returns the quarter of the moon (viz 1st, 2nd, 3rd, 4th)

Function GetPhaseAngle:double returns an angle between 0 and 180 being defined as the phase

angle formed at the moon by two lines, one from the sun to the moon and one from earth to

moon. An angle of 0 represents a full moon, whereas an angle of 180 represents the new/old

moon point when we would see a full exclipse of the sun. Some sources adjust this angle to

represent illumination with 0 as new moon,180 as full moon and 360 as the old moon.

Astronomical texts use the first interpretation and so this is used here.

Summary
I have included a sample program written in Delphi to illustrate how the VK5DJ_sunmoon.dll

may be used. Note that when printing the figures to a screen you would normally not show the

double variable value as I have mostly done. This was done only to minimize the example code

for you and keep it uncluttered by print statements. I have provided a couple of rounded printouts

to show how it might be done.

I recommend the following printout accuracy.

Azimuth and Elevation: 2 decimal places in degrees

RightAscension and Declination: normally 2 decimal places but I have included a function

within the DLL to output hours:mins:secs for Right Ascension.

Distance to moon: nearest km

Angular diameter of moon: 3 decimal places in degrees

Distance of DX in km round to nearest 10km (short distances to 1 km but large distances due to

irregularities of earth limit accuracy to 0.1%)

Bearing of DX in degrees round to 1 decimal place (irregularities limit to 0.1%)

Doppler readings to nearest Hz

Libration to nearest Hertz

Antenna polarity to nearest degree (if you are an optimist)

GetDB could be printed to a rounded 1 or 2 decimal places. Again, this is a rough guide only.

GetLocator returns string 6 characters long and should be printed in its entirety.

GetLatLong returns a double variable in decimal degrees and would normally be converted to

Deg:Min:Sec. You will need to program the conversion; it is not available from the DLL.

Moon Phase and Illumination to two decimal points.

Phase angle rounded to three places of integer.

Moon quarter as a string

GHA and LHA to two decimal places

Enjoy these routines. No guarantees are offered, use at your own peril. The results seem to be

pretty good. The improved algorithms for Doppler in this version are from a program by Gerald

(K5GW). They are more accurate than my effort. Thanks Gerald. I acknowledge libration coding

by Keith Burnett and George Rosenberg.

If you use this DLL library I would hope that you will keep its name intact and acknowledge the

author’s work in bringing together the knowledge of many people.

Acknowledgements:

Author Title Published

Jean Meeus Astronomical Algorithms 2nd

Edition 1998 with corrections 2005

Willmann-Bell, Inc

Peter Duffett-Smith Astronomy with your personal

computer

Cambridge University Press

1985

John Morris Amateur Radio Software RSGB 1985

Gerald Williamson MC011011.bas re doppler

Keith Burnett and others Spreadsheet re libration

John Drew

VK5DJ

DLL version 2.15 March 2013

Updated 6 September 2014: Corrected topocentric distance and distinguished illumination and

phase. Added quarter and Phase Angle.

