
Comments on the “VK5DJ_sunmoon.dll” and how to use it

(This version for the „double‟ value float rather than „extended‟)

The purpose of the DLL is to provide an easily used platform for the calculation of the

position of the sun or the moon and to provide the associated information often

required for amateur radio operators interested in EME. Due to the use of stdcall the

DLL library should work with any of Windows versions of Delphi, Visual Basic, C

and versions of these compilers designed for Linux.

The first and most important procedure is that of DataToDLL. It is this procedure that

sends the required data to the DLL to enable the main calculations to be made. Most

of the functions described below extract result data from the DLL following this call.

Some do a separate calculation such as bearing/distance, GetLocator, GetLatLong.

DataToDLL has 12 parameters. They are in order:

Year,Month,Day,Hour,Minute,Second: all of which are word variables

HtASL, Latitude, Longitude: all of which are double real variables

RefractSwitch,SunMoonSW: all of which are Boolean and

Band: which is a double variable).

To send the data to the DLL you load the appropriate variables with the values

required and use:

 DataToDLL(Year, Month, Day, Hour, Minute, Second, HtASL, Latitude,

 Longitude, RefractSwitch,SunMoonSW,Band);

Typical values for the variables might be:

Year: 2008 (note full number required and all date time variables must be in UTC)

Month: 7 (values from 1-12)

Day: 1 (values from 1-31)

Hour: 13 (values from 0-23)

Minute: 10 (values from 0-59)

Second: 30 (values from 0-59

HtASL: 10 (values from 0.0 – whatever your height may be in metres)

Latitude:-37.5833 (your Latitude +ve for northern hemisphere, -ve for southern)

Longitude: 140.3831 (your longitude +ve for East and –ve for West)

RefractSwitch: true (values true or false. True includes optical refraction adjustment)

SunMoon:false (true= sun calculation, false=moon calculation)

Band: 1296.0 (Band in use in MHz used for Doppler calculations

Note that str8 is a type of string with 8 characters. It has been defined like this in

GetLocator and GetRtAscHHMMSS

Type Str8 = string[8];

Because the main procedure and its supporting functions are all external and

contained in VK5DJ_sunmoon.dll, you need to tell your compiler and in the case of

Delphi this would be in the declaration part of the interface or implementation

section. It is declared like this:

Procedure DataToDLL(Year,Month,Day,Hour,Minute,Second:word; HtASL,

Latitude, Longitude:double; RefractSwitch,SunMoonSW:boolean;Band:word);

StdCall; external 'VK5DJ_sunmoon.dll'

Note the addition of the word „stdcall‟ and the name of the DLL in quotes. The DLL

should be in the same directory as your main program.

Similarly the data gathering functions should be declared in the following way.

 function GetElevation:double; stdcall; external 'VK5DJ_sunmoon.dll'

 function GetAzimuth:double; stdcall; external 'VK5DJ_sunmoon.dll'

 function GetDoppler:double; stdcall; external

 'VK5DJ_sunmoon.dll'

 Function GetLibration:double;stdcall;external 'VK5DJ_sunmoon.dll'

 function GetDistance:double; stdcall; external 'VK5DJ_sunmoon.dll'

 function GetAngularDiam:double; stdcall; external 'VK5DJ_sunmoon.dll'

 function GetRightAsc:double; stdcall; external 'VK5DJ_sunmoon.dll'

 function GetRtAscHHMMSS:str8; stdcall; external „VK5DJ_sunmoon.dll‟

 function GetDeclination:double; stdcall; external 'VK5DJ_sunmoon.dll'

 function GetDecTopo:double; stdcall; external 'VK5DJ_sunmoon.dll';

 function GetDXdistance(Longitude,Latitude,RemoteLong,

RemoteLat: double;Dist_B:boolean):double; stdcall;

external 'VK5DJ_sunmoon.dll'

 function GetPolarity:double; stdcall; external 'VK5DJ_sunmoon.dll'

 function GetDB:double; stdcall; external 'VK5DJ_sunmoon.dll'

 function GetLocator(Latitude,Longitude:double):str8; stdcall;

external 'VK5DJ_sunmoon.dll'

 function GetLatLong(Locator:Str8; LatOrLong:boolean):double; stdcall;

 external 'VK5DJ_sunmoon.dll'

 function GetVersion:double; stdcall; external 'VK5DJ_sunmoon.dll'

In this document I have split the listings of the main procedure DataToDLL, function

GetDXDistance, GetLocator and GetLatLong across several lines for legibility

reasons. Depending on your compiler this may be allowable or each may need to be

placed as one long line. Be careful that you include the required punctuation.

When the main procedure DataToDLL is called the sun or moon calculations are

performed and data is created and stored in the DLL library.

To extract the data you call the appropriate functions:

function GetElevation:double; returns the elevation of the object from your home

location in degrees in a double variable. When printing this to screen you should

round it to no better than the nearest 0.01 degree.

function GetAzimuth:double; returns the azimuth of the object from your home

location in degrees in a double variable. When printing this to screen you should

round it to no better than the nearest 0.01 degree.

function GetDoppler:double; returns the Doppler shift home/home if DataToDLL

call was loaded with home data, and it returns the Doppler shift DX/DX if the

DataToDLL call was loaded with the remote station data. Each shift is doubled from

the perspective of the station concerned as listening to his/her own signal.

To calculate the mutual Doppler shift the single direction shifts are taken into

account, added and averaged. See my sample program TestDLL. Note that to obtain

the required data for both the home station and the DX station the procedure

DataToDLL must be called with the appropriate information before reading back the

Doppler shift. Each read provides the doubled Doppler shift as if the station was

hearing its own echoes. The Doppler shift between Home and DX is then calculated

using something like this:

DopplerHome_DX:= DopplerHome/2 +DopplerRemote/2

Internally Doppler uses a time period 1 minute earlier, the current time and the time

forward 1 minute to calculate the difference in distance between the moon and the

station. This distance difference is turned into a Doppler shift using the speed of light

and the frequency in use.

The GetDoupler routine no longer requires a specific parameter.

Doppler:=GetDoppler puts the value of Doppler into the double variable Doppler.

Function GetLibration:double; returns the libration expressed as spread in Hertz of a

received frequency

function GetDistance:double; returns the distance to the sun/moon in kilometres.

function GetAngularDiam:double; returns the angular diameter of the sun/moon in

degrees.

function GetRightAsc:double; returns the RightAscension of the sun/moon in

decimal hours.

function GetRightAscHHMMSS:String[8]; returns the RightAscension of the

sun/moon as a short string of 8 characters i.e. string[8] in the form of HH:MM:SS.

Note the type of the function MUST be a short string of 8 characters. See variable

types above.

function GetDeclination:double; returns the geocentric declination of the sun/moon

in degrees.

function GetDecTopo:double; returns the topocentric declination of the sun/moon in

degrees.

Function GetDXdistance(Longitude,Latitude,RemoteLong,RemoteLat,True):

 double;

returns the distance of the remote station in kilometres when “True” or its great circle

bearing if “False”.

Typical values for the variables might be:

Longitude: 140.8 (dec degrees longitude +ve for East and –ve for West)

Latitude: -37.8 (dec degrees Latitude +ve for Northern hemisphere, -ve for

 southern)

RemoteLong: -122.00 (DX station longitude +ve for East and –ve for West)

RemoteLatitude: 24.982 (DX station Latitude, +ve for N, -ve for S)

Dist_B: true (true = distance calculation in Km, false= bearing calc in degrees)

function GetPolarity:double; returns the polarity shift as measured from a moon‟s

perspective. See my example as to how to combine the readings from home station

and DX station to identify the possible rotation required between the two antennas

(Home and DX). The polarity is most easily read as a displacement + or – from the

DX alignment so I have used an equation to extract it once each polarity is

determined:

PolarityShift:=PolarityHome-PolarityRemote;

If PolarityShift>90 then PolarityShift:=PolarityShift-180;

The resultant is the direction the polarization of the home station must be rotated to

match another station using the same polarization as you. Keep in mind that below

1296 MHz Faraday rotation can be such as to make this figure meaningless. Treat it as

a guide.

function GetDB:double; returns the relative signal strength in dB compared with the

mean position of the moon. The strength will be greater at Perigee and weaker at

Apogee. This figure is an approximate guide as there are many other factors that

affect signals. It takes into account the distance of the moon and the size of the moon.

The next two functions are routines that may prove useful in your program.

function GetLocator(Latitude,Longitude:double):string[8]; returns the Locator for

the station when the latitude and longitude is passed to the function.

function GetLatLong(Locator:Str8; LatOrLong:boolean):double; returns a latitude

and longitude in decimal degrees from a provided locator. The routine is called with

the Locator and a Boolean variable LatOrLong as parameters. Locator has six

characters eg QF02ek and the LatOrLong variable is set true to recover the Latitude

and false to recover the Longitude. Because of the nature of Locators the Lat and

Long are approximate but sufficiently accurate for calculations provided by the DLL.

Example:

Latitude:=GetLatLong(„QF02ek‟, true); sets Latitude to -37.5625 while

Longitude:=GetLatLong(„QF02ek‟,false); sets Longitude to 140.375

Function GetVersion:double; returns the version number of the DLL as a double

number. A typical external call might look like this:

label27.Caption:='DLL version '+floattostr(GetVersion);

Summary

I have included a sample program written in Delphi to illustrate how the

VK5DJ_sunmoon.dll may be used. Note that when printing the figures to a screen you

would normally not show the double variable value as I have mostly done. This was

done only to minimize the example code for you and keep it uncluttered by print

statements. I have provided a couple of rounded printouts to show how it might be

done.

I recommend the following printout „accuracy‟.

Azimuth and Elevation: 2 decimal places in degrees

RightAscension and Declination: normally 2 decimal places but I have included a

function within the DLL to output hours:mins:secs for Right Ascension.

Distance to moon: nearest km

Angular diameter of moon: 3 decimal places in degrees

Distance of DX in km round to nearest 10km (irregularities of earth limit to 0.1%)

Bearing of DX in degrees round to 1 decimal place (irregularities limit to 0.1%)

Doppler readings to nearest Hz

Libration to nearest Hertz

Antenna polarity to nearest degree (if you are an optimist)

GetDB could be printed to a rounded 1 or 2 decimal places. Again, this is a rough

guide only.

GetLocator returns a string 6 characters long and should be printed in its entirety.

GetLatLong returns a double variable in decimal degrees and would normally be

converted to Deg:Min:Sec. You will need to program the conversion, it is not

available from the DLL

Enjoy these routines. No guarantees are offered, use at your own peril. The results

seem to be pretty good. The improved algorithms for Doppler in this version are from

a program by Gerald (K5GW). They are more accurate than my effort. Thanks

Gerald. I acknowledge libration coding by Keith Burnett and George Rosenberg.

If you use this DLL library I would hope that you will keep its name intact and

acknowledge my work in bringing together the work of many people but particularly

those acknowledged below.

I wish to acknowledge the following sources:

Author Title Published

Jean Meeus Astronomical Algorithms

2
nd

 Edition 1998 with

corrections 2005

Willmann-Bell, Inc

Peter Duffett-Smith Astronomy with your

personal computer

Cambridge University

Press 1985

John Morris Amateur Radio Software RSGB 1985

Gerald Williamson MC011011.bas re doppler

Keith Burnett and others Spreadsheet re libration

73

John Drew

VK5DJ

http://www.vk5dj.com

15 August 2011

http://www.vk5dj.com/

